Matemática, Aritmética, Razões, proporções e suas propriedades.

Proporções e suas propriedades.

  • No post anterior sobre o assunto, chegamos a ver três propriedades das proporções. Vamos lembrar:
  •  O produto dos extremos é igual ao produto dos meios. 
  • Alternando os extremos entre si, a proporção continua existindo.
  •  Alternando os meios entre si, a proporção continua existindo. 

OBS.: Se aplicarmos as propriedades dois e três ao mesmo tempo, equivale a aplicar uma quarta propriedade.

  •  Invertendo as posições dos antecedentes com seus consequentes, continuamos a ter uma proporção. Vejamos o exemplo.
    • $\mathbf{\color{navy}{{2\over 3} = {6\over 9}}}$
  • Se invertermos teremos.
    • $\mathbf{\color{navy}{{3\over 2} = {9\over 6}}}$

Tanto na primeira como na segunda proporção teremos:

  • $\mathbf{\color{navy}{{2\cdot 9} = {3\cdot 6}}}$
  • $\mathbf{\color{navy}{{3\cdot 6}={9\cdot 2}}}$
  • Ambas as  multiplicações resultam em igualdades e dão o mesmo valor.

  •  A soma dos antecedentes, está para a soma dos consequentes, assim como qualquer antecedente está para seu consequente. 
    • $\mathbf{\color{navy}{{2\over 3}={6\over 9}}}$
  • Os antecedentes são 2 e 6, sendo os consequentes 3 e 9. Aplicando a propriedade vamos ter.
    • $\mathbf{\color{navy}{{(2+6)\over (3+9)} ={2\over 3} = {6\over 9}}}$
    • $\mathbf{\color{navy}{{8\over12} = {2\over 6} ={6\over 9}}}$
  • Fazendo a igualdade entre as duas primeiras razões ou entre a primeira e terceira teremos sempre uma proporção. Quem nos prova isso é a propriedade fundamental.
    • $\mathbf{\color{navy}{{8\cdot3}  = {12\cdot 2}  = 24}}$
    • $\mathbf{\color{navy}{{8\cdot 9} = {12\cdot 6}  = 72}}$
  •  A diferença entre os antecedentes, está para a diferença entre os consequentes, como qualquer antecedente está para seu consequente. 
    • $\mathbf{\color{navy}{{2\over 3} = {6\over 9}}}$
  • Aplicando a propriedade, temos:
    • $\mathbf{\color{navy}{{(6 – 2)\over (9 – 3)}={2\over 3}={6\over 9}}}$
    • $\mathbf{\color{navy}{{4\over 6}= {2\over 3}= {6\over 9}}}$
  • Multiplicando os extremos e meios teremos:
    • $\mathbf{\color{navy}{{4\cdot 3}= {6\cdot 2}= 12}}$
    • $\mathbf{\color{navy}{{4\cdot 9}= {3\cdot 6} = 18}}$

Verificamos a validade da propriedade.

  •  Multiplicar ou dividir os antecedentes ou consequentes de uma proporção por um mesmo número, resulta nova proporção. 
    • $\mathbf{\color{navy}{{2\over 3} = {6\over 9}}}$
    • $\mathbf{\color{navy}{{{2\cdot 5}\over 3} = {{6\cdot 5}\over 9}}}$
    • $\mathbf{\color{navy}{{10\over 3} = {30\over 9}}}$
    • $\mathbf{\color{navy}{{10\cdot 9} = {3\cdot 30} = 90}}$
  • Fazendo o mesmo com os consequentes, vamos ter:
    • $\mathbf{\color{navy}{{2\over{3\cdot 4}}= {6\over{9\cdot 4}}}}$
    • $\mathbf{\color{navy}{{2\over 12} = {6\over 36}}}$
    • $\mathbf{\color{navy}{{2\cdot36} = {12\cdot 6 } = 72}}$
  • Da mesma forma se fizermos a divisão dos termos por um mesmo número, a proporção de mantem, embora o valor dos produto dos extremos e meios seja diferente. Essas propriedades servem na prática para solução de diversos problemas práticos. Vamos exercitar um pouco a sua aplicação apenas numérica.
  •  Faça a inversão dos termos das proporções e confirme se continua a existir uma proporção.
    • $\mathbf{\color{olive}{{7\over 10}  = {21\over 30}}}$
    • $\mathbf{\color{olive}{{X\over Y} = {m\over n}}}$
    • $\mathbf{\color{olive}{{5\over 11} = {25\over 55}}}$
    • $\mathbf{\color{olive}{{15\over 12} = {25\over 20}}}$
  • Aplique as propriedades da soma e diferença entre os antecedentes consequentes, verificando se a proporcionalidade permanece.
    • $\mathbf{\color{olive}{{9\over 17}= {45\over 85}}}$
    • $\mathbf{\color{olive}{{13\over 23} = {78\over 138}}}$
    • $\mathbf{\color{olive}{{4\over 27} = {52\over 321}}}$
    • $\mathbf{\color{olive}{{11\over 18} = {66\over 108}}}$
  • Multiplique os antecedentes/consequentes das proporções pelo primeiro número primo acima do menor número entre eles, verificando depois a proporcionalidade.
    • $\mathbf{\color{olive}{{3\over 7} = {9\over21}}}$
    • $\mathbf{\color{olive}{{5\over 8} = {15\over 24}}}$
    • $\mathbf{\color{olive}{{11\over 6}= {44\over 24}}}$
    • $\mathbf{\color{olive}{{9\over 5} = {36\over20}}}$
  • Divida os antecedentes/consequentes das proporções pelo menor divisor primo e verifique a proporcionalidade depois disso.
    • $\mathbf{\color{olive}{{18\over 25} = {54\over 75}}}$
    • $\mathbf{\color{olive}{{28\over 32} = {14\over 16}}}$
    • $\mathbf{\color{olive}{{35\over 45}= {55\over 77}}}$
    • $\mathbf{\color{olive}{{30\over 50}= {60\over 100}}}$

Obs.: Em caso de dúvida, contate comigo por meio de um dos canais abaixo informados. 

Curitiba, 04 de maio de 2015 (Atualizado em 22/07/2016)

Décio Adams

decioa@gmail.com

adamsdecio@gmail.com

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 9805-0732

2 ideias sobre “Matemática, Aritmética, Razões, proporções e suas propriedades.

    1. Décio Adams Autor do post

      Obrigado por comentar. Sou fã de matemática e física, mas tratadas de modo menos “tecnicista”, usando linguagem menos formal, pois isso facilita a compreensão. Valeu!

      Responder

Deixe uma resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *