Arquivo da tag: matemática

Matemática – Aritmética, Quatro operações – Subtração

  • Subtração

  • Em que consiste a subtração?

  • Consiste em retirar, de um grupo de objetos, um determinado número desses objetos. O grupo de onde retiramos recebe o nome de minuendo e o grupo que retiramos, recebe o nome de subtraendo. Ao que sobra do minuendo, damos o nome de resto. 

Rendered by QuickLaTeX.com

Continue lendo

Matemática – Funções de Primeiro Grau, Detalhes.

Funções com gráficos paralelos.

Como vimos nos dois posts anteriores, existem funções de primeiro grau, cujos gráficos são paralelos. Basta que elas tenham coneficientes angulares iguais. O que as diferencia, é o coeficiente linear, ou seja, o número que não está ligado a uma variável pela operação de multiplicação ou divisão.

Lembrando: $\bbox[5px,border:2px solid olive]{\color{navy}{ y = ax + b}}$

O coeficiente angular é o número que ocupa o lugar da letra $\color{navy}{a}$ e o coeficiente linear é o número que ocupa o lugar da letra $\color{navy}{b}$

Continue lendo

Matemática – Função do primeiro grau, Função afim (continuação).

Vamos dar mais um passo?

Na última vez que falamos desse assunto, vimos duas funções do tipo denominado função afim e deixamos alguns exercícios. Mas o assunto não ficou esgotado. Há mais coisas a saber sobre isso. Do mesmo modo que as funções lineares, também essas podem ter coeficiente angular negativo, isto é, apresentar-se na forma gráfica, inclinadas ao contrário dos dois exemplos vistos. Vejamos o primeiro.

Continue lendo

Matemátia – Álgebra – Divisão de polinômios.

Polinômios com uma variável

  • Seja por exemplo dividir os polinômios
  • $\color{navy}{(x^3 + 5x^2 + x – 10)}: {(x + 2)}$
  • Vamos recorrer a colocação dos polinômios na “chave” como fazemos na divisão de números com vários algarismos. Assim:
    Divisão de polinômios 1.1

    Divisão de polinômios 1.1

    Começamos com os polinômios colocados em ordem decrescente dos expoentes da variável. Dividimos o termo de maior grau do dividendo, pelo termo de maior grau do divisor. Multiplicamos o divisor pelo quociente $x^2$. O resultado devemos subtrair dos termos de mesmo grau do dividendo. Que resulta em $3x^2$.

Continue lendo

Matemática – Função do primeiro grau – Função afim.

Função afim!

Achou engraçado?

Mas é esse mesmo o nome que damos a uma função do primeiro grau, cuja representação gráfica cartesiana, não passa pela origem do sistema de eixos cartesianos. Sua forma geral é do tipo \[\bbox[5px,border:2px solid olive]{\color{maroon}{ y = a\cdot x + b }}\]

Coeficiente angular

O coeficiente do termo $\color{navy}{ax}$ é também nesse caso o coeficiente angular, indicando a inclinação da reta gráfica, em relação ao eixo das abcissas.

Coeficiente linear

Vejamos o que acontece se substituirmos a variável $\color{navy}{x}$ pelo valor 0(zero).

$ y = a\cdot 0 + b $ $\Leftrightarrow$ $ y = 0 + b = b $ $\Leftrightarrow$ $ y = b $

Isto significa que o ponto correspondente no plano cartesiano, corresponde ao valor do termo independente $\color{navy}{b}$. Neste ponto ocorre a intersecção do gráfico, com o eixo das ordenadas.

Continue lendo

Matemática – Função do primeiro grau

Função do primeiro grau.

1. Função linear

Quando exprimimos uma grandeza $\color{maroon}{y}$ em função de uma expressão do primeiro grau da grandeza $\color{maroon}{x}$, dizemos que temos uma $\color{blue}{funç\tilde{a}o}$ do primeiro grau. \[\bbox[5px,border:2px solid olive]{\color{navy}{y = f(x)}}\]

A função é denominada linear quando o termo independente é nulo ou inexistente. Assim:

\[\bbox[5px,border:2px solid olive]{\color{navy}{ y = a\cdot x}}\] Continue lendo

Matemática, Conjuntos numéricos, Produto cartesiano.

Produto cartesiano!

Que bicho é esse?

Chamamos produto cartesiano de dois conjuntos numéricos A e B, ao conjunto de pares ordenados $\color{maroon}{(x; y)}$, onde $\color{maroon}{ x\in A} $ e $\color{maroon}{ y\in B}$. 

Simbólicamente fica

  • $\bbox[5px,border:2px solid olive]{\color{maroon}{ A X B =\{{(x;y)} | x \in A \wedge y \in B\}}}$. Lê-se:A cartesiano B é igual aos pares (x;y), tais que x pertence a A e y pertence a B”.

Podemos inverter a ordem:

  • $\bbox[5px,border:2px solid olive]{\color{maroon}{B X A = \{{(x;y)} | x\in B \wedge y \in A\}}}$. Lemos: “B cartesiano A, é igual aos pares (x;y), tais que x pertence a B e y pertence a A”.

Continue lendo

Matemática – Conjuntos numéricos (Revisão). Atualizado em 08/07/2016

Conjuntos de números.

  • A necessidade de contar ou quantificar as coisas, como número de animais caçados, composição do rebanho com o surgimento da pequária, volume de cereais e outros produtos colhidos e até o número de soldados de um exército, levou o homem, há muito tempo, a criar números e símbolos para representá-los. Existiu, ao longo da história, uma imensa variedade de sistemas de numeração. Muitos deles associados a alguma coisa ou até a uma parte do próprio corpo. Assim, os indígenas que habitavam a América, utilizavam um sistema de numeração de base 5(cinco), que é o número de dedos de uma mão. Os povos fenícios da antiguidade, usaram e espalharam por todos os lugares onde comerciavam, seu sistema de numeração  sexagesimal ,  isto é, de base 60. É deles que vem a divisão de uma hora em 60 minutos, e um minuto em 60 segundos. Uma circunferência é dividira em 360º, cada grau dividido em 60′ e cada minuto em 60″. Os sistemas de informática, são baseados na numeração de base 2 (dois) ou numeração binária. Associada, inicialmente à uma lâmpada apagada, representando o número 0(zero) e uma lâmpada acesa representando o número 1(hum)

Continue lendo

Matemática – Inequações do segundo grau (Exercícios resolvidos e propostos)

Hora de treinar a cuca!

Vamos determinar o conjunto verdade de algumas inequações do segundo grau, fazendo o estudo de sua variação de sinais em relação às raízes.

a)  $\color{blue}{ -5x^2 + 25x + 70 \lt 0 }$

Vamos começar por identificar os coeficientes numéricos, comparando com a forma geral. Temos que $ a = -5 $, $ b = 25 $ e $ b =  70 $. Para facilitar os cálculos, iremos dividir todos os termos por $-5$, simplificando e teremos \[\frac{-5x^2}{-5} + \frac{25x}{-5} + \frac{70}{-5} \lt 0\] \[x – 5x – 14 \lt 0\]  Agora os coeficientes passam a ser $ a = 1$, $b = -5$ e $c = -14$. É o momento de  determinar o discriminante \[\bbox[yellow,5px,border:2px red solid]{\color{maroon}{\Delta =  b^2 – 4\cdot a \cdot c}} \] \[\Delta = {(-5)^2 – 4\cdot 1\cdot (-14)}\] \[\Delta = 25 + 56 \] \[\Delta = 81\] O discriminante é positivo e portanto teremos duas raízes reais e diferentes que tornarão a expressão igual a zero. Calculando as raízes \[\bbox[lime,5px,border:2px solid red]{\color{maroon}{ x = {{-b\pm\sqrt \Delta}\over{2a}}}} \] \[ x = {{-(-5)\pm\sqrt{81}}\over {2\cdot 1}} \] \[x= {{5\pm 9}\over 2}\] \[x’ = {{5 + 9}\over 2} = {14\over 2} = 7\] \[ x” = {{5 – 9}\over 2} = {-4\over 2} = -2\] Temos pois para valores que anulam a expressão em $x$ os números $-2 $ e $7$. Vejamos como fica o comportamento na Reta Real.

\[\underbrace{\color{lime}{-\infty\leftarrow =========}}{-2}\circ\underbrace{————-}{7}\circ\underbrace{\color{lime}{============\rightarrow\infty}}\]

Vimos que para valores externos das raízes, isto é, nesse caso para $x \lt -2$ ou $x \gt 7$ a expressão terá o mesmo sinal do coeficiente $a$ na inequação na forma original, sem simplificação. Vimos acima que $a = -5$ ou seja $ a \lt 0$, o que nos leva à conclusão de que o sinal  será negativo para esses valores. Já para os valores compreendidos entre $ -2 $ e $7$, a expressão terá o sinal contrário de $a$, portanto positivo. Assim deduzimos que o conjunto verdade dessa inequação é dado por: \[\bbox[silver, 5px,border:2px solid blue]{\color{green}{ V = \{ x \in R | x \lt -2 \vee x \gt 7\}}} \]

b)$\color{blue}{ 3x^2 + 15x -72 \ge 0}$

Identificamos os coeficientes $ a = 3$, $b = 15$ e $c = -72$.  Observando esses valores, percebemos que é possível simplificar a expressão, dividindo todos os termos por $3$, o que nos dá \[\frac{3x^2}{3} +\frac{15x}{3} – \frac{-72}{3} \] \[ x^2 + 5x – 24 \ge 0\] Temos agora os novos coeficientes $ a= 1$, $b = 5 $ e $c = -24$. Vamos determinar o discriminante. \[\bbox[yellow,5px,border:2px red solid]{\color{maroon}{\Delta =  b^2 – 4\cdot a \cdot c}} \] \[ \Delta = 5^2 – 4\cdot 1\cdot {-24} \] \[\Delta = 25 + 96 \] \[\Delta = 121\] Temos novamente $\Delta \gt 0$ e em consequência duas raízes reais e diferentes.

\[\bbox[lime,5px,border:2px solid red]{\color{maroon}{ x = {{-b\pm\sqrt \Delta}\over{2a}}}} \] \[x = {{- 5\pm\sqrt{121}}\over{2\cdot 1}}\] \[x= {{-5\pm{11}}\over 2}\] \[x’ = {{-5 + 11}\over 2} = {6\over 2} = 3 \] \[x” = {{-5 – 11}\over 2} ={-16\over 2} = -8\] Lançando esses valores na Reta Real, fica:

\[\underbrace{\color{lime}{-\infty\leftarrow ============(-8)\bullet}}\underbrace{———-}\underbrace{\color{lime}{3\bullet============\rightarrow\infty}}\]

As raízes $-8$ e $ 3$ anulam a expressão, enquanto os valores externos tornam a expressão positiva, por ter no mesmo sinal de $a$. Os valores internos tornarão a expressão negativa, que é o sinal contrário de $a$. Como a inequação é $\ge 0$, o conjunto verdade será também dado por:

\[\bbox[silver,5px,border: 2px solid blue]{\color{green}{V=\{ x \in R| x\le -8 \vee x \ge 3\}}} \]

c)$\color{blue} {x^2 -13x + 42 \le 0}$

Os coeficientes numéricos são $a=1$, $b= -13$ e $c = 42$. Notamos que agora não há simplificação a ser feita, pois o coeficiente $a =1$ e a expressão está na sua forma mais simples. Vejamos o discriminante:\[\bbox[yellow,5px,border:2px red solid]{\color{maroon}{\Delta =  b^2 – 4\cdot a \cdot c}} \] \[\Delta=(-13)^2 – 4\cdot 1\cdot 42 = 169 – 168 = 1\] Temos então que $\Delta \gt 0$ e novamente as raízes são reais e diferentes. \[\bbox[lime,5px,border:2px solid red]{\color{maroon}{ x = {{-b\pm\sqrt \Delta}\over{2a}}}} \] \[x={{-(-13\pm\sqrt{1}}\over{2\cdot 1}}\] \[x = {{13\pm 1}\over 2}\] \[x’= {{13 + 1}\over2} = {14\over 2} = 7\] \[x”={{13 – 1}\over 2} = {12\over 2} = 6 \] Lançando os valores $6$ e $7$ na Reta Real, teremos:

\[\underbrace{-\infty\leftarrow —————-}\underbrace{\color{lime}{6\bullet========7\bullet}}\underbrace{———————-\rightarrow\infty}\]

Para valores de $x$ a esquerda de $6$ ou a direita de $7$, a expressão será positiva, isto é, o mesmo sinal de $a$, que é positivo. Para valores internos do intervalo $6$ e $7$, a expressão será negativa, o sinal contrário de $a$. Assim sendo, a desigualdade da inequação é $\le$, o conjunto verdade será formado pelos números entre $6$ e $7$, inclusive.

\[\bbox[silver, 5px, border:2px solid blue]{\color{green}{V = \{x \in R| 6 \le x \le 7\}}}\]

 d)$\color{blue}{ 3x^2 – 18x + 72 \gt 0} $

Notamos que é possível simplificar a expressão, pois todos os coeficientes são múltiplos de $3$. Então \[\frac{3x^2}{3} – \frac{18x}{3} + \frac{72}{3} \] \[ x^2 – 6x + 24 \gt 0\]

Agora os nossos coeficientes são $a = 1$, $b = -6$ e $c = 24$. Vamos ao discriminante.

\[\bbox[yellow,5px,border:2px red solid]{\color{maroon}{\Delta =  b^2 – 4\cdot a \cdot c}} \] \[ \Delta = {(-6)^2}\cdot 1\cdot {24} = 36 – 96 = -60\] Consequentemente constatamos que $\Delta \lt 0$, o que nos leva a conclusão de que nenhum número real tornará a expressão igual a zero. Como fica a inequação? Não temos ponto de referência para dizer que a expressão será positiva ou negativa para esse ou aquele valor. Vamos escolher três valores, sendo um negativo, o próprio zero e um positivo, substituindo e verificando o resultado. Sejam esses números $-3$, $0$ e $5$.

Para $x = -3$, teremos \[3x^2 -18x + 72 \gt 0\] \[ 3\cdot (-3)^2 – 18\cdot{(-3)} + 72 \gt 0\] \[{3\cdot 9} + 54 + 72 \gt 0 \] \[ 27 + 54 + 72 \gt 0\] \[ 153 \gt 0\] Esta sentença é verdadeira.

Para $x = 0$, teremos \[3\cdot 0 – 18\cdot 0 + 72 \gt 0\] \[ 0 + 0 + 72 \gt 0\] \[ 72 \gt 0\] Esta sentença é verdadeira.

Para $x = 5$, teremos \[3\cdot 5^2 – 18\cdot 5 + 72 \gt 0\] \[ 3\cdot 25 – 90 + 72 \gt 0\] \[75 – 90 + 72 \gt 0\] \[147 – 90 \gt 0\] \[ 57 \gt 0\] Sentença verdadeira. 

Vamos escolher mais um número negativo e dois positivos, para sanar qualquer dúvida. $-5$, $2$ e $7$.

Para $x=-5$, teremos \[3\cdot (-5)^2 – 18\cdot(- 5) + 72 \gt 0\] \[3\cdot 25 + 90 + 72 \gt 0\] \[75 +90 + 72 \gt 0\] \[ 237 \gt 0\] Sentença verdadeira. 

Para $x = 2$, teremos \[3\cdot 2^2 – 18\cdot 2 + 72 \gt 0 \] \[3\cdot 4 – 54 + 72 \gt 0\] \[ 12 – 54 + 72 \gt 0\] \[30 \gt 0\] Sentença verdadeira.

Para $x = 7$, teremos \[3\cdot 7^2 – 18\cdot 7 + 72 \gt 0\] \[3\cdot 49 – 126 + 72 \gt 0\] \[147 – 126 + 72 \gt 0 \] \[93 \gt 0\] Sentença verdadeira.  

Fica evidenciado que para qualquer número real colocado no lugar de $x$ nessa inequação, o resultado é uma sentença  verdadeira. Podemos concluir que o conjunto verdade é então o próprio conjunto dos números reais.

\[\bbox[silver,5px,border:2px solid blue]{\color{green}{ V = R}}\]

Se a mesma inequação tivesse o sinal de desigualdade $\lt $ no lugar de $\gt$, essas sentenças todas seriam falsas e portanto o conjunto verdade da inequação seria um conjunto vazio. Assim

\[3x^2 – 18x + 72 \lt 0\] \[\bbox[silver,5px,border:2px solid blue]{\color{green}{ V = \emptyset}}\] O mesmo aconteceria se tivéssemos os sinais de desigualdade $\ge$ ou $\le$, uma vez que teríamos a conjunção alternativa $\vee$, que tornaria as sentenças igualmente verdadeiras. É interessante notar que nestes casos o sinal da expressão é sempre igual ao sinal de $a$. Se $a\lt 0$, a expressão será sempre negativa, para qualquer número $x \in R$. Se $a \gt 0$, a expressão será positiva para qualquer valor de $x \in R$.

Agora é a sua vez de praticar. Analise os sinais das inequações e determine o conjunto verdade em cada caso.

a) $\color{green}{x^2 – 17x + 70 \le 0}$

b) $\color{green}{2x^2 + 4x – 48 \ge 0}$

c) $\color{green}{ x^2 – 5x – 36 \gt 0} $

d)$\color{green}{ 3x^2 – 108 \lt 0}$

e) $\color{green}{5x^2 – 35x \lt 0}$

f)$\color{green}{ 4x^2 – 12x + 44 \gt 0}$

g) $\color{green}{5x^2 + 110 \ge 3x^2 + 14x} $

 h)$\color{green}{ 6x^2 + 54 \le 0} $

i) $\color{green}{4x -9 \gt x^2 }$

 j) $\color{green}{x^2 – 19x + 88 \lt 0}$

l) $\color{green}{ 7x^2 + 28x \gt 0}$

m) $\color{green}{{\frac{2}{3}}x^2 -\frac{3}{5} \le 0} $

Obs.: Se tiver dúvida sobre a resolução de algum desses exercícios, faça contato comigo. Estes eu não vou resolver logo em seguida. Legal? Procure se virar nos trinta, meu!

Curitiba, 10 de junho de 2016

Décio Adams

decioa@gmail.com

adamsdecio@gmail.com

www.facebook.com/livros.decioadams

www.facebook.com/decio.adams

@AdamsDcio

Telefone: (41) 3019-4760

Celulares: (41) 9805-0732

Matemática – Álgebra, Inequações do segundo grau(cont 1)revisado em 03/07/2016.

Pensou que acabou?

  • Ainda tem mais, bem mais. No post anterior nós vimos o caso das inequações em que existem dois valores que anulam a sentença da inequação. Mas existem aquelas em que temos duas raízes iguais, os tem tem duas raízes simétricas, não tem raiz uma vez que recai num radical par com radicando negativo.
  • Um passo de cada vez. Seja a inequação $\bbox[5px,border:2px solid maroon]{\mathbf{\color{blue}{ x^2 -6x + 9 \lt 0}}} $.

Continue lendo